Chemical Reaction Engineering

Lecture 5

The Scope

- The Aim of the Course:
- To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor)
- Reactors

Chemical plant for ethylene glycol

The general mole balance equation

- For any component j :
- Mass balance:

Rate of flow IN - Rate of flow OUT + Generation=Accumulation

$$
F_{j 0}-F_{j}+G_{j}=\frac{d N_{j}}{d t}
$$

Chemical Reaction Engineering

- Lecture plan (Lectures 5-10)
- Lecture 5: Mole balance and design equations for batch and continuous mode reactors.
- Lecture 6: Rate laws in the reactor design
- Lecture 7: Isothermal reactor design
- Lecture 8: Bioreactors. Comsol modelling of reactions and reactors. H-cell with chemical reaction.
- Lecture 9. Non-isothermal reactors. Comsol modelling: flow through porous bed and stirred batch reactor.
- Lectures 10-11. Diffusion and Reactions. Comsol modelling of biochips: reaction on the surface.

Rates of chemical reactions

$A+2 B \longrightarrow 3 C+D$

Instantaneous rate of consumption of a reactant:

$$
-d[R] / d t
$$

Instantaneous rate of formation of a product:

$$
d[P] / d t
$$

From stoichiometry

$$
\frac{d[D]}{d t}=\frac{1}{3} \frac{d[C]}{d t}=-\frac{d[A]}{d t}=-\frac{1}{2} \frac{d[B]}{d t}
$$

Rate of the reaction: $\quad v=\frac{1}{v_{i}} \frac{d n_{i}}{d t}=\frac{d \xi}{d t}$
! In the case of heterogeneous reaction the rate will be defined per unit area of catalyst as $\mathrm{mol} / \mathrm{m}^{2} \mathrm{~s}$! In the case of continuous flow reactor change of concentration is not equal to the reaction rate

Rates of chemical reactions

$$
A+2 B \longrightarrow 3 C+D
$$

- Usually we interested in the concentration of one particular reagent, say A.
The reaction rate in terms of reagent A is the number of moles of A reacting per unit time, per unit volume ($\mathrm{mol} \cdot \mathrm{m}^{-3} \cdot \mathrm{~s}^{-1}$)

However this definition is inconvenient in the case of a reactor and can be misleading as the concentration of A is varying with time and position inside the reactor:

Rates of chemical reactions

- So, we should rather say that:
- Rate of chemical reaction is an algebraic function involving concentration, temperature, pressure and type of catalyst at a point in the system

$$
A \rightarrow \text { product }
$$

- e.g. $1^{\text {st }}$ order reaction

$$
-r_{A}=k C_{A}
$$

- $2^{\text {nd }}$ order reaction

$$
-r_{A}=k C_{A}^{2}
$$

The general mole balance equation

- For any component j :
- Mass balance:

Rate of flow IN - Rate of flow OUT + Generation=Accumulation

$$
F_{j 0}-F_{j}+G_{j}=\frac{d N_{j}}{d t}
$$

The general mole balance equation

- Generally, the rate of reaction varies from point to point in the reactor:

$$
G_{i}=\int^{V} r_{i} d V
$$

- The general mole balance equation:

$$
F_{j 0}-F_{j}+\int^{V} r_{i} d V=\frac{d N_{j}}{d t}
$$

- From here, design equation for different types of the reactors can be developed

Types of Chemical Reactors

- Depending on loading/unloading of the reactor

Continuos

Flow

CSTR (Continuous-Stirred Tank Reactor)

Tubular reactor

Batch reactors

- for small-scale operation;
- testing new processes
- manufacturing expensive products
- processes difficult to convert to continuous operation

Batch reactors

- assuming perfect mixing, reaction rate the same through the volume

$$
\frac{d N_{j}}{d t}=r_{j} V
$$

- integrating the equation we can get N_{j} vs $t-$ "mole-time trajectory"

Batch reactors

Pfaudler's Batch reactor

Continuous Flow Reactors

- CSTR (Continuous-Stirred Tank Reactor)

Pfaudler's CSTR reactor

Continuous Flow Reactors

- CSTR (Continuous-Stirred Tank Reactor)

$$
\begin{aligned}
F_{j 0}-F_{j} & +\int^{V} r_{i} d V=\frac{d N_{j}}{d t} \\
& =0, \text { operation in a steady mode }
\end{aligned}
$$

- assuming perfect mixing, so
- Reaction rate is the same through the volume
- Conditions of exit stream are the same as in the reactor

$$
F_{j 0}-F_{j}=-r_{j} V \quad V=\frac{F_{j 0}-F_{j}}{\begin{array}{c}
-r_{j} \\
\text { Design equation of CSTR }
\end{array}} \text { or } V=\frac{v_{0} C_{A 0}-v C_{A}}{-r_{A}}
$$

Continuous Flow Reactors

- Tubular reactor

- usually operates in steady state
- primarly used for gas reactions

- easy to maintain, no moving parts
- produce highest yield
- temperature could be difficult to control, hot spots might occur

Continuous Flow Reactors

- Tubular reactor
- Reaction continuously progresses along the length of the reactor, so the concentration and consequently the reaction rate varies in axial direaction
- in the model of Plug Flow Reactor (PFR) the velocity is considered uniform and there are no variation of concentration (and reaction rate) in the radial direction
- If it cannot be neglected we have a model of Laminar Flow Reactor.

Continuous Flow Reactors

- PFR (plug flow reactor) - useful approximation of a tubular reactor

Plug flow-no radial variations in velocity.
concentration, temperature, or reaction rate

- For every slice of volume:

$$
F_{j 0}-F_{j}+r_{i} \Delta V=0 \Rightarrow r_{i}=\frac{F_{j \mid V}-F_{j \mid V+\Delta V}}{\Delta V} \Rightarrow r_{i}=\frac{d F_{j}}{d V}
$$

- From here, a volume required to produce given molar flow rate of product can be determined

Continuos Flow Reactors

- Design equation for PFR

$$
r_{j}=\frac{d F_{j}}{d V} \quad \Longrightarrow \quad d V=\frac{d F_{j}}{r_{j}} \quad V=\int_{F_{j 0}}^{F_{j}} \frac{d F_{j}}{r_{j}}=\int_{F_{j}}^{F_{j 0}} \frac{d F_{j}}{-r_{j}}
$$

- If we know a profile of molar flow rate vs. Volume we can calculate the required volume to produce given molar flow rate at the outlet.

Continuous Flow Reactors

- Packed-Bed reactor - here the reaction takes place on the surface of catalyst
- reaction rate defined per unit area (or mass) of catalyst

$$
-r_{A}=\mathrm{mol} \text { A reacted } / \mathrm{s} \cdot \mathrm{~g} \text { catalyst }
$$

Continuous Flow Reactors

W - catalyst weight coordinate

- as in the PFR case, we can calculate design equation now in terms of catalyst weight coordinate

$$
F_{A \mid W}-F_{A \mid W+\Delta W}+r_{i} \Delta W=0 \Rightarrow r_{i}=\frac{F_{A \mid W}-F_{A \mid W+\Delta W}}{\Delta W} \Rightarrow r_{A}^{\prime}=\frac{d F_{A}}{d W}
$$

Reactors Mole Balance: Summary

	Reactor	Comment	Mole Balance Differential Form	Algebraic Form	Integral Form
	Batch	No spatial variations	$\frac{d N_{A}}{d t}=r_{\mathrm{A}} V$		$t_{1}=\int_{N_{\mathrm{Al}}}^{N_{\mathrm{A} 0}} \frac{d N_{\mathrm{A}}}{-r_{\mathrm{A}} V}$
	CSTR	No spatial variations, steady state	-	$V=\frac{F_{\mathrm{A} 0}-F_{\mathrm{A}}}{-r_{\mathrm{A}}}$	-
	PFR	Steady state	$\frac{d F_{\mathrm{A}}}{d V}=r_{\mathrm{A}}$		$V_{1}=\int_{F_{\mathrm{A} 1}}^{F_{\mathrm{A} 0}} \frac{d F_{\mathrm{A}}}{-r_{\mathrm{A}}}$
	PBR	Steady state	$\frac{d F_{\mathrm{A}}}{d W}=r_{\mathrm{A}}^{\prime}$		$W_{1}=\int_{F_{\mathrm{A} 1}}^{F_{\mathrm{A} 0}} \frac{d F_{\mathrm{A}}}{-r_{\mathrm{A}}^{\prime}}$

Sizing of reactors

Here we'll find how to find the size of a reactor is relation between the reaction rate and conversion factor is known

Conversion in the reactors

$$
a A+b B \longrightarrow c C+d D
$$

- if we are interested in species A we can define the reactant A as the basis of calculation

$$
A+\frac{b}{a} B \longrightarrow \frac{c}{a} C+\frac{d}{a} D
$$

- conversion: $X_{A}=\frac{\text { Moles of A reacted }}{\text { Moles of A fed }}$
- maximum conversion for reversible reactions is the equilibrium conversion X_{e}.

Batch reactor design equations

$$
[\text { Moles of A reacted }]=\left[N_{A 0}\right] \cdot X_{A}
$$

[Moles of A in reactor, $\left.N_{A}\right]=\left[N_{A 0}\right]-\left[N_{A 0}\right] \cdot X_{A}$

$$
\begin{aligned}
& -\frac{d N_{A}}{d t}=\left(-r_{A}\right) V \\
& \frac{d N_{A}}{d t}=-N_{A 0} \frac{d X}{d t}
\end{aligned}
$$

Design equation for Batch Reactor

- the equation can be integrated to find the time necessary to achieve required conversion
- the longer reactants spend in the chamber the higher is the degree of conversion

Design equations for flow reactors

$$
\begin{aligned}
& {\left[F_{A 0}\right][X]=\frac{[\text { Moles of A fed }]}{[\text { time }]} \frac{[\text { Moles of A reacted }]}{[\text { Moles of A fed }]}} \\
& {\left[F_{A 0}\right][X]=\frac{[\text { Moles of A fed }]}{[\text { time }]}}
\end{aligned}
$$

Molar flow rate fed to the system

Molar flow rate of the consumption of A in the system

$$
\left[F_{A 0}\right]-\left[F_{A 0}\right] \cdot X=\left[F_{A}\right] \quad \text { A leaving the system }
$$

- molar flow rate is concentration * volume rate

$$
\left[F_{A}\right]=\left[F_{A 0}\right](1-X)=C_{A 0} v_{0}
$$

Design equations for flow reactors

- CSTR:

$$
\begin{aligned}
& {\left[F_{A}\right]=\left[F_{A 0}\right](1-X)} \\
& V=\frac{F_{A 0}-F_{A}}{-r_{A}}=\frac{F_{A 0} \cdot X}{-r_{A}}
\end{aligned}
$$

- Because the reactor is perfectly mixed, the exit composition is identical to the composition inside the reactor

Design equations for flow reactors

- Tubular Flow Reactor (PFR):

$$
\left.\begin{array}{l}
-r_{A}=\frac{-d F_{A}}{d V} \\
{\left[F_{A}\right]=\left[F_{A 0}\right](1-X)}
\end{array}\right\} \leadsto-r_{A}=\frac{F_{A 0} d X}{d V}
$$

- to integrate we need to know r_{A} depends on the concentration (and therefore on conversion)

Design equations for flow reactors

- Packed-Bed Reactor: similar derivation, but W instead of V

$$
\left.\begin{array}{l}
-r_{A}^{\prime}=\frac{-d F_{A}}{d W} \\
{\left[F_{A}\right]=\left[F_{A 0}\right](1-X)}
\end{array}\right\} \Rightarrow-r_{A}^{\prime}=\frac{F_{A 0} d X}{d W}
$$

- from this equation we can find weight of catalyst W required to achieve the conversion X

Levenspiel plot

- reactor volume required is always reciprocal in r_{A} and proportional to X .
PFR: $\quad V=F_{A 0} \int_{0}^{X} \frac{d X}{-r_{A}}$
CSTR: $\quad V=\frac{F_{A 0} \cdot X}{-r_{A}}$
- Levenspiel plot:

Example (2.2, p.48)

- Reaction $\mathrm{A} \rightarrow \mathrm{B}$ described by the data below and the species A enter the reactor at a molar flow rate of $0.4 \mathrm{~mol} / \mathrm{s}$:

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{\mathrm{A}}\left(\frac{\mathrm{mol}}{\mathrm{m}^{3} \cdot \mathrm{~s}}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05
$\left(1 /-r_{\mathrm{A}}\right)\left(\frac{\mathrm{m}^{3} \cdot \mathrm{~s}}{\mathrm{~mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20
$\left[F_{\mathrm{A} 0} d-r_{\mathrm{A}}\right]\left(\mathrm{m}^{3}\right)$	0.89	1.08	1.33	2.05	3.54	5.06	8.0

- Calculate the volume necessary for 80% conversion

Example (2.2, p.48)

- Solution:
- Based on the table the Levenspiel plot can be constructed

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{\mathrm{A}}\left(\frac{\mathrm{mol}}{\mathrm{m}^{3} \cdot \mathrm{~s}}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05
$\left(1 /-r_{\mathrm{A}}\right)\left(\frac{\mathrm{m}^{3} \cdot \mathrm{~s}}{\mathrm{~mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20
$\left[F_{\mathrm{Ad}} /-r_{\mathrm{A}}\right]\left(\mathrm{m}^{3}\right)$	0.89	1.08	1.33	2.05	3.54	5.06	8.0

- The design equation for the CSTR:

$$
V=\frac{F_{A 0}}{\left(-r_{A 1}\right)_{\text {exit }}} X \quad V=0.4 \frac{\mathrm{~mol}}{\mathrm{~s}} 20 \frac{\mathrm{~m}^{3} \cdot \mathrm{~s}}{\mathrm{~mol}} 0.8=6.4 \mathrm{~m}^{3}
$$

Example (2.3, p.50)

- Calculate based on the same data the volume of PFR:
- Again, we construct the Levenspiel plot

X	0.0	0.1	0.2	0.4	0.6	0.7	0.8
$-r_{\mathrm{A}}\left(\frac{\mathrm{mol}}{\mathrm{m}^{3} \cdot \mathrm{~s}}\right)$	0.45	0.37	0.30	0.195	0.113	0.079	0.05
$\left(1 /-r_{\mathrm{A}}\right)\left(\frac{\mathrm{m}^{3} \cdot \mathrm{~s}}{\mathrm{~mol}}\right)$	2.22	2.70	3.33	5.13	8.85	12.7	20
$\left[F_{\mathrm{A} 0} /-r_{\mathrm{A}}\right]\left(\mathrm{m}^{3}\right)$	0.89	1.08	1.33	2.05	3.54	5.06	8.0

- The design equation for the PFR:

$$
V=\int_{0}^{0.8} \frac{F_{A 0}}{-r_{A 1}} d X=2.165 \mathrm{~m}^{3}
$$

Reactors in series

- CSTR in series

Figure 2-4 Two CSTRs in series.
$-1^{\text {st }}$ reactor

$$
\begin{gathered}
F_{A 0}-F_{A 1}+r_{A 1} V_{1}=0 \\
F_{A 1}=F_{A 0}-F_{A 0} X_{1} \\
\quad-2^{\text {nd }} \text { reactor }
\end{gathered}
$$

$$
\square \quad V_{1}=F_{A 0} \frac{1}{-r_{A 1}} X_{1}
$$

$$
\begin{aligned}
& F_{A 1}-F_{A 2}+r_{A 2} V_{2}=0 \\
& F_{A 2}=F_{A 0}-F_{A 0} X_{2}
\end{aligned}
$$

$$
\square \quad V_{2}=F_{A 0} \frac{1}{-r_{A 2}}\left(X_{1}-X_{2}\right)
$$

Mean residence time (Space Time)

- mean residence time defined as:

$$
\begin{gathered}
\tau=\frac{V}{V_{0}} \\
X=\frac{F_{\mathrm{A} 0}-F_{\mathrm{A}}}{F_{\mathrm{A} 0}}=\frac{C_{\mathrm{A} 0} v_{0}-C_{\mathrm{A}} v}{C_{\mathrm{A} 0} v_{0}}=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A} 0}} \\
w h e n X=0, C_{\mathrm{A}}=C_{\mathrm{A} 0} \\
w h e n X=X, C_{\mathrm{A}}=C_{\mathrm{A}} \\
d X=\frac{-d C_{\mathrm{A}}}{C_{\mathrm{A} 0}} \\
V=v_{0} \int_{C_{\mathrm{A}} \frac{C_{\mathrm{A}}}{c_{\mathrm{A}}} \frac{d C_{\mathrm{A}}}{-r_{\mathrm{A}}}} \\
\tau=\int_{C_{\mathrm{A}}}^{c_{\mathrm{A} 0}} \frac{d C_{\mathrm{A}}}{-r_{\mathrm{A}}}
\end{gathered}
$$

Reactor design equations: Summary

Differential Form

Algebraic Form
Integral Form

Batch

$$
N_{\mathrm{A} 0} \frac{d X}{d t}=-r_{\mathrm{A}} V \quad t=N_{\mathrm{A} 0} \int_{0}^{X} \frac{d X}{-r_{\mathrm{A}} V}
$$

CSTR

$$
V=\frac{F_{\mathrm{A} 0}\left(X_{\mathrm{out}}-X_{\mathrm{in}}\right)}{\left(-r_{\mathrm{A}}\right)_{\mathrm{out}}}
$$

PFR

$$
F_{\mathrm{A} 0} \frac{d X}{d V}=-r_{\mathrm{A}}
$$

$$
V=F_{\mathrm{A} 0} \int_{X_{\mathrm{in}}}^{X_{\text {out }}} \frac{d X}{-r_{\mathrm{A}}}
$$

PBR

$$
F_{\mathrm{A} 0} \frac{d X}{d W}=-r_{\mathrm{A}}^{\prime}
$$

$$
W=F_{\mathrm{A} 0} \int_{X_{\mathrm{in}}}^{X_{\text {out }}} \frac{d X}{-r_{\mathrm{A}}^{\prime}}
$$

Problems

- Class problem: P2-7b (p.74)
- Home problems:
- P2-5b
- P2-6a "Hippopotamus stomack"
http://www.engin.umich.edu/~cre/web mod/hippo/index.htm

